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Abstract

Two kinds of elastic laws have been adopted by Gao (1990 and 1997) to analyze the deformation fields
near a crack tip. One of them contains the response to volume change and shape change; the other contains
the response to extension and compression. In this paper the two kinds of constitutive relations are examined
by typical large deformation, and the restrictions on constitutive parameters are discussed. © 1999 Elsevier
Science Ltd. All rights reserved.

]. Introduction

An important problem in nonlinear elastic theory is to give a reasonable and applicable elastic
law. Many attempts have been made to develop a theoretical stress-strain relation that can fit
experimental results for highly elastic materials. However, in general, the strain energy function is
complicated. Ogden (1972a, b) proposed a form of strain energy which is a linear combination of
strain invariants. An excellent agreement between Ogden's formula and Treloar's (1958) exper
imental data up to 7 times extension is obtained.

When we consider a problem with singular point (such as crack tip, concentrated force), the
situation is different from the ordinary finite deformation case. Actually, near a singular point in
rubber like material, the strain has a tendency to go to infinity, that renders the problem compli
cated. Theoretical analysis requires the elastic law to be expressed as simple as possible. However,
the simplicity often violates rationality. In order to reflect the material behavior near a singular
point, i.e. strain tends to infinity, two kinds of constitutive relations were introduced by Gao (1990
and 1997); the earlier one represents the response to shape change and to volume change; the
latter represents the response to tension and compression. These two constitutive relations were
successfully used in the analysis of a singular point by Gao and Gao (1994), Gao and Shi (1995),
Gao and Liu (1995, 1996), Gao and Gao (1996), Gao (1997). Furthermore, these two kinds of
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strain energy were directly used in finite element calculation and were shown to be stable by Zhou
and Gao (1998) in the Total Lagrangian (L.T.) method, the maximum tension of a line element
reached 50 times. It is well known that every constitutive relation contains some parameters that
are restrained in certain value reach to ensure the material behavior to be reasonable. In the present
paper the two elastic laws will be examined by typical load. The constitutive parameters will be
discussed in detail. Finally, these two elastic laws are compared with Ogden's (1972a, b) formulae
and Knowles et al. (1973) formulae.

2. Basic formulae

Let P and Q denote the position vectors of a material point before and after deformation,
respectively, Xi (i = 1,2,3) is the Lagrangian coordinate. Two sets of local triads are defined as
follows,

(]P
p.=--

I exi '

oQ
Qi = oxi (1)

The displacement gradient tensor is

(2)

Where pi is the conjugate of Ph ® the dyadic symbol, and the summation rule is implied. The
right and left Cauchy-Green strain tensors are

where superscript T indicates transposition. D and d possess the same invariants such as

I, =D:U=d:U, 12 =D:D=d:d, 13 =D 2 :D=d2 :d, ...

/1 =D-':U=d-':U, /2 =D-1:D- 1 =d-1:d- 1, ...

(3)

(4)

(5)

in which U denotes unit tensor, : denotes duel multiplication. Among these invariants, there are
only three independent. Besides, a common used invariant is K,

(6)

Let )'i denote the values of principal strain, then

(7)

For isotropic material, the strain energy per unit undeformed volume can be expressed by three
independent invariants, for example,

(8)

The Kirchhoff stress is
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aw
(T = 2- (9)aD

then the Cauchy stress is

T = K- li2 p'(T' pT

3. Two elastic laws

(10)

From physics point of view, the necessary conditions for a reasonable constitutive relation of a
solid can be stated in two ways:

(1) A material element must possess stiffness to resist both shape change and volume change.
(2) A material element must possess stiffness to resist both extension and compression.

According to statement (1), a strain energy formula that only contains two terms was proposed
by Gao (1990),

w= a(~~)n +b(K-1)mK-q (11)
K 1i 3

where a, b, n, m, q are positive constitutive parameters m should be an even integer. Noting eqn
(7), it is found that the first term of eqn (11) only depends on the ratio of ;'i but not on their
magnitudes, therefore, it only reflects pure shape change; the second term of eqn (11) reflects pure
volume change. Equations (9)-(11) can be used to give

_1/2 { (/I)n (d U) m 1_ (m q)}T=2K . na~---:- -~--- +b(K-l) K q ---- U
K l

i 3 /1 3 K-l K
(12)

Evidently, the first term in the brackets is a stress deviator while the second term is a hydrostatic
stress.

According to statement (2), another strain energy formula that is even simpler was proposed by
Gao (1997),

w = A(l~ +r~l)

Using equations (9), (10) and (13) we obtain

T = 2NAK-li2(lf-ld-I~lld~l)

~. Material behavior according to eqn (12)

t.1. Small strain case

Let

e = ~(d - U), e = e: U

Assuming e to be small, eqn (12) is reduced to

(13)

(14)

(15)
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r = 4na3n
-

1
(;- ~ U)+2m bmem

-
1 U

For m = 2, the linear elastic relation is obtained, and it follows that

(16)

2b-n3n
-

2a
v=

4b+n3n
-

2a'

8n3n ab
E=---

4b+n3n
-

2a
(17)

where E and v are Young's modulus and Poisson's ratio, respectively. Evidently, v < 0.5 is
automatically satisfied. The condition v > 0 requires that

(18)

4.2. Uniaxial stress

Without loss of generality, we consider a cubic material element with arrises of unit length as
shown in Fig. 1(a). Under the action of normal stress rll along xl-direction, the arris lengths
become )" j1 and j1, respectively, but the arrises still remain perpendicular, as shown in Fig. 1(b).
Let ej (i = 1,2,3) denote the unit vectors along xi-direction, then according to eqns (2)-(7), it
follows that

F = ),e l ® el + j1(e2 ® e2 +e3 ® e3)

d = ),2 el ® ej +j12(e2 ® e2 +e3 ® e3)

d- ' = ),-2el ®e l +j1-2(e2 ®e2+e3 ®e3)

II = ),2+2j12, L I = A- 2+2j1-2, K= A2j14

Further, eqn (12) becomes

(19)

(20)

(21)

(22)

(a) (b)

I
I
I
I
I
I
I
I
I
I
}------ -

,,/'
"

}-------
",/

/,

1

Fig. I. (a) A material cubic element. (b) Uniaxial load.
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Considering r22 = r 33 = 0, eqn (23) gives

then eqn (23) becomes

When A. » 1(ll « 1), eqn (24) can be used to give

3

_ (~)4(3s+n) _ 3s-2n
II - 3sb A 2(3s+n)

where

s=m-q

eqn (26) shows that when A~ 00 if II ~ 0, the following condition is required

s> 2n/3

Substituting eqn (26) into (25), it follows that,

r = 2(naY(3sb) I-IX ).2nlXe] ® ej

in which

3 2s-1
()(=-'--

2 3s+n

In order to ensure that r ~ 00 when A~ 00, s > 0.5 is required.
The tota11oad acting on the element is

2 3" n 3s(2n-I)-n
L = II r ll = 2(na}3s+n(3sb}3s+nA 3s+n

eqn (31) shows that if L increase with A, the following condition is required,

n
s> 3(2n-l)

The work to extend the specimen is

(25)

(26)

(27)

(28)

(29)

(30)

(31 )

(32)
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f
),· 3s+n ~ _n_ 6sn

W = LdA == --(na)3s+n(3sb)3s+nA3s+ n
3sn *I

Evidently, when ..1.* ~ 00, W ~ 00.

When A« l(fl » 1), eqn (24) gives

eqn (34) shows that when A« 1 if fl » 1 the following is required,

q > n/3

Substituting eqn (34) into (25) it follows that

r = - (2nna)fJ(6qb)l-fJA-nfJ
el @ el

where

3(2q+l)
fJ = 6q+n

The total load acting on the element is

6q n 6q(n+ll+n
L = fl2,11 = - (2nnahq+n (6qb)6q+nA - - 6q+-;;--

eqn (38) shows that the material element is always stable since n, q > O.
The work to compress a specimen to become a plate with thickness ..1.* is

f
),· 6q +n ~ -'-' - 6qn

W = L dA == --- (2nna)6q+n(6qb)6q+n).6q+n
I 6qn *

4.3. Biaxial stress

(33)

(34)

(35)

(36)

(37)

(38)

(39)

Consider the same cubic material element as shown in Fig. lea). Under the action of normal
stress ,22 and ,23 (=,22), the arris length becomes )., fl and fl, respectively, as shown in Fig. 2.
Equations (19)-(23) are still valid but the relation of Aand f-1 must be given by ,II = 0, i.e.
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then eqn (23) is reduced to

2na (f.12 _A
2
) [(),)4!3 (f.1)2/3Jn

r=- ?- - +2,- (e2®e2+e3®e3)
Af.12 A- + 2f.12 f.1 II.

When f.1 » 1(), « 1), eqn (40) gives

then eqn (41) becomes

r = (2nna)"(3sb)l-xf.12na(e2 ® e2 +e3 ® e3)

where the IX is given by eqn (30).
The total load on one side is

3" n 3,,(2n-I)-n
L = Af.1r 22 = ),f.1r 33 = (2nna)3s+n (3sb)3s+nf.1 3,,+n

eqn (44) shows that if L increase with f.1, the condition (32) is required.
The work to extend the specimen is

Ill' 3s+n ~ _n_ 6sn
W = 2 L df.1 == -- (2nna)3,,+n(3sb)3s+nf.13s+n

I 3sn *

When f.1« l(A» 1), eqn (40) gives

3

. (3qb)2(3q+2~ _ 2(3q-n)
A = -2 f.1 3q+2n

na

5551

(40)

(41)

(42)

(43)

(44)

(45)

(46)

eqn (46) shows that if eqn (35) is satisfied, A -+ 00 when f.1-+ O. Substituting eqn (46) into (41) it
follows that

r = -(2naF(3qb)I-'/l-4n'(e2 ®e2+e3 ®e3)

where

3(2q+ 1)
y = 2(3q+2n)

The load on one side is

22 ~ ~ _3q(4n+I)+2n
L = Af.1r = - (2na)3q+2n(3qb)3q+2nf.1 3q+2n

The work to compress the specimen is

(47)

(48)

(49)
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f
l" 3q+2n 3q 2n 12qn

W = 2 LdJ1 =- (2na)3q+2n (3qb)3q+2n J1* 3q+2n
I 6qn

5. Material behavior according to eqn (14)

5.1. Small strain case

From eqn (15) it follows that

d- I = U-2s, L 1 = 3-2e

Substituting eqns (15) and (51) into (14) it follows that

,v-I [ N-l ]' = 8NA3 s+ ---3eU

then

(50)

(51)

(52)

N-I
v=·~~

2N+ 1
(53)

The condition v > 0 requires

N> I

5.2. Uniaxial stress

(54)

Consider the specimen shown in Fig. 1. Equations (19)-(23) are still valid, then eqn (14) gives

,= ~~~ [(n-IA2-I~IIA-2)el@e l +(Ft 1J12-I'(-IJ1-2)(e2@e2+e3 @e3)] (55)
AJ1~

The conditions ,22 = ,33 = 0 give

().2 +2J12)N - I J12 _ (A -- 2 +2J1- 2)N-I J1- 2 = 0

then eqn (55) becomes

2NA <V-I ('2 J14), = ----- I A - - e @ e
1 0 I 10 I I
AJ1~ A"

When A» 1(J1« 1), eqn (56) gives

N-I 2
J1 = 22(N+I)},-I+ N + 1

(56)

(57)

(58)

If J1 -4 0 when A-4 00, the condition (54) is required. From eqns (22) and (58) we can see, if K
increase with A the following condition is required,
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N < 3 (59)

Equations (57) and (58) can be combined to give

2 4
, = 2N+]AN),2N+ 1- N+ I e, ® el

The total load is

L=f.l2,ll =2NAA2N- 1

The work to extend the specimen is

w= f' Ldli == AIi~N

When Ii « I (f.l » I), eqn (56) gives

then eqn (57) is reduced to

ON 4

2~-AN1-2N+I-- tV.,= - N+I II. N+le, I2Y el

The totalload is

L = f.l2,11 = -2NAIi- 2N --'

The work to compress the specimen is

W = f'. Ld), == A),;;2N

5.3. Biaxial stress

(60)

(61)

(62)

(63)

(64)

(65)

(66)

Consider the cubic material element as shown in Fig. I (a), under the action of ,22 and ,33 ( = ,22)

it is deformed as shown in Fig. 2. Using the condition ,11 = 0 and eqn (55) we obtain

(A2+2f.l2)N-lli2_(1i-2+2f.l-2)N-IIi-2 = 0

then eqn (55) is reduced to

When f.l» IU« I), eqn (67) gives

N-I 2
), = 2-2(N+I)f.l- I + N+ 1

Then eqn (68) is reduced to

(67)

(68)

(69)
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N-I 2
r = 2N+ 2(N+ I)ANfl2N-I- N+ 1 (e2 @ e2 +e3 @ e3)

The load on the side is

L = Aflr22 = N A2Nfl 2lV - 1

The work to extend the specimen is

W = 2 f' Ldfl == 2NAfl~N

When fl« l(ic» 1), egn (67) gives

lV- I 2
), = 22(N--Ilfl-1+ N+l

then (68) is reduced to

N-I 2
r = -2N-2(N+ljANfl-2N-1-N+I(e2@e2+e3 @e3)

The load on the side is

L = Aflr 22 = _2NNAfl-2N-1

The work to compress the specimen is

6. An example

(70)

(71)

(72)

(73)

(74)

(75)

(76)

We consider a spherical rubber membrane subject to internal pressure p as shown in Fig. 3.
Let (R, 0, <1» and (r, e, <p) denote the spherical coordinates for the framework before and after
deformation, respectively. The deformation is described by the mapping function

(a)

Fig. 3. (a) A thin spherical membrane. (b) Spherical coordinates.
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{
8 = E>
r = f(R) , qJ = <P (77)

Let ei (i = r, e, q» denote the unit vectors along the coordinate lines r, 8 and q>, then

PR= en Pe = R sin <Pea, P<fJ = Rerp

QR = t~ er = f' en Qe = r sin <Pea, Q<fJ = rerp

therefore,

d = A2er ® er +Ji2(ea ® ea+erp ® erp)

where

(78)

(79)

(80)

A=['. ,
f

Ji=-
R

(81)

Then I], I ~ I and K are given by eqn (22). It is assumed that initial thickness H is much smaller
than the radius of the membrane Ro, so that the strain and stress along the thickness can be
considered as constants, i.e. the values of A and Ji in eqn (81) are constants.

Further, since H « Ro, we assume that

then the equilibrium condition for the membrane can be written as

r
r lill + rrp'P - ~p = 0

h

where h is the thickness after deformation,

h = Hi' = },H

(82)

(83)

(84)

The analysis of deformation will be given according to two elastic laws of eqn (12) and eqn (14),
respectively.

6.1. According to eqn (12)

From eqns (41), (83), (84), and (81) it follows that

2na Ii? - A
2

[(~)4/3 +2 (~)2/3 In = JiRp
AJi2 A2+2Ji2 Ji ), 2AB

When Ji» 1, eqn (41) becomes eqn (43) then eqn (85) is reduced to

Rp 3.1' n 3
- (2n )-(3 b)- -[.I'(2n-3)-n]2H - na 3s+n S 3s+nJi3s+n

[fp increase with Ji, the following condition is required

(85)

(86)
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n
n>3/2, s>2n-3

The work to swell up the membrane is

6.2. According to eqn (14)

From eqns (57), (83), (84) and (81) it follows that

2NA N_ I ( 2 _ A
4

) _ JiRp
, 0 I I Ji 2 - 2) H
A.Ji~ Ji'

When Ji » 1, eqn (89) is reduced to

Rp = 2NNAJi2N-3
2H

Ifp increase with Ji it is required that

N> 3/2

The work to swell up the membrane is

W = 4nR 3f' Ji2 p dJi == 4n2NR 2HAJi~N

7. The relation of eqns (11) and (13) with other forms of energy

(87)

(88)

(89)

(90)

(91)

(92)

Ogden (1972a, b) proposed a quite general but convenient form of strain energy, using the
notation of this paper, it can be written as

(93)

where K is given in (7), Jii are constants, ¢«(Xi) are strain invariants with exponent (Xi that may not
be integer,

¢«(XJ = (A~i + A~i + A~i - 3)/(Xi

If F == 0, and only two terms in (93) are taken, let,

IJ(I = 2, (X2 = -2, Jil = 2A, Ji2 = -2A

(94)

(95)

then (93) becomes an equivalent form of (13) for the case of N = 1. Ogden (1972a, b) obtained a
sufficient condition for satisfying Hill's constitutive inequality,
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Il/i, > 0 (each i, no summation) (96)

Evidently, eqn (13) meets this condition for N = 1.
As for the general case, 1 < N < 3, eqn (13) is not equivalent with (93), the Hill's inequality is

difficult to discuss, but the analysis in this paper directly revealed the reasonable reach of N.
From Ogden's original idea, see eqn (4) of Ogden (1972b), the general form of (93) can be

written as

If only one 1J((XJ is taken and (XI = 2, YI = -1/3, III = 2a, let

F = b(K_l)mK-q +3aK- l / 3

(97)

(98)

then (97) becomes a special case of (11), i.e. n = 1.
Therefore, both eqns (11) and (13) possess some common feature with the energy form given

by Ogden (1972a, b).
Knowles and Sternberg (1973) proposed another form of energy and has been used by many

authors,

(99)

where

(100)

The Hill's inequality was not discussed by Knowles and Strenberg (1973) for (99). The interesting
fact is that the same essential solutions were obtained according to different energy forms (11),
(13) and (99), see Gao and Gao (1999).

The inherent relations between (11), (13), (97) and (99) should be further discussed in concrete
application.
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